Glancing at the problems of contemporary ontology

Roberto Poli
University of Trento & Mitteleuropa Foundation
E-mail: r.poli@tin.it

0.1. Resumen

El problema de las ontologías está a la orden del día en los diferentes campos de aplicación de la Inteligencia Artificial (Programación Neuro-Linguística, Recuperación de la Información, modelado de bases de datos, entre otros). En todos ellos, las ontologías se están demostrando como una estrategia viable mediante las cuales construir modelos robustos del dominio de investigación y aplicación. Efectivamente, un conocimiento sustentado ontológicamente de los objetos de un dominio ha necesariamente de facilitar su codificación, y hacerla más transparente y natural. Ciertamente, una ontología puede proporcionar mayor robustez a los modelos al construir los criterios y categorías con las cuales éstos se organizan y edifican. Además, puede proporcionar los contextos en los cuales los diferentes modelos pueden insertarse y recategorizarse para conseguir una transparencia recíproca mayor. El reciente interés mostrado por los académicos de la inteligencia artificial será analizado y se revisarán los principales proyectos en curso. Por último, se presentará la diferencia entre la ontología como tecnología y como análisis conceptual, esto es, la diferencia en el concepto que de las ontologías tienen los ingenieros del conocimiento y los filósofos.

0.2. Abstract

Ontology is the talk of the day in various chapters of AI (NLP, IR, DB modeling among others). Ontology comes into play as a viable strategy with which, for example, to construct robust domain models. An ontologically grounded knowledge of the objects of a domain should make their codification simpler, more transparent and more natural. Indeed, ontology can give greater robustness to models by furnishing criteria and categories with which to organize and construct them; and it is also able to provide contexts in which different models can be
embedded and recategorized to acquire greater reciprocal transparency. The recent interest in ontology exhibited by AI scholars will be analyzed and the main ongoing projects will be shortly discussed. The difference between ontology as technology and ontology as conceptual analysis (that is, the difference between ontology as understood by mainstream AI scholars and ontology as understood by philosophers) will be presented as well.

Keywords: Ontology. Ontologies. Knowledge organization. Philosophical backgrounds.

1. Introduction

In the past ten years, a considerable interest in ontology has developed. Ontology is explicitly declared to be helpful in: general issues in knowledge representation, knowledge acquisition, sharing, integration, and reuse, problem-solving methods, object-oriented database design, natural language understanding and machine translation, enterprise integration and engineering models, common-sense reality, part-whole theories, matter, space, time and causality modelling, and domain modelling —see Poli (2001) for extensive references. From this welter of information we can conclude that there is a burgeoning KR research community, which is opening up new avenues for research and undertaking important new projects. However, this interest may easily dwindle or end up in a blind alley unless at least three problems are addressed very seriously: a) what is an ontology and which are its boundaries (that is, what problems are ontological (rather than, say, epistemological, logical or linguistic, etc.)?; b) what is the structure of an ontology?; and c) who knows something about it? On considering these problems, one notes immediately that the research community which has recently formed around the label ‘ontology’ is somewhat reticent on such matters. On the other hand, whatever conclusions we may reach, it is unreasonable to address a scientific (and technological) problem without marking out its boundaries, without analysing its structure, and without listening to those who know something about it.

Before dealing with the above questions, I must clear the field of a further problem. The term ‘ontology’ is used with a wide variety of meanings, some of which seem merely to attach a new label to areas of inquiry that are already well delimited and consolidated. In these cases, by ‘ontology’ is meant no more than 'reference domain' or 'context’, without anything new being added to what usually goes by the name of ‘semantics’. I shall not be dealing with semantic problems in this work and consequently shall not be considering ontology in this sense. Let us now examine some other definitions of ontology.

Some definitions given in recent papers claim that ontology is: a collection of general categories and associated relations, a formal description of the objects in
the world, the content of logical pure forms, an explicit specification of a con-
ceptualization, a meta-layer theory (ontology as a viewpoint), a world model, or
a declarative model of the terms and relationships in a domain (for references,

Instead of discussing all the above definitions, I shall proceed by listing some
criteria —for a different discussion, see Guarino and Giaretta (1995). I shall
resort on two oppositions whereby ontology is either scientific research (1) orien-
ted towards objects or oriented towards our concepts (of objects), or (2) either
domain dependent or domain independent.

The opposition between orientation towards objects and orientation towards
concepts mirrors the difference between the two main senses in which ontology
is understood in philosophy (that is, the Aristotelian and Kantian viewpoints res-
pectively). In order to avoid confusions I would prefer to say that the two orien-
tations mirror the distinction between what may be properly called ontology and
what is usually called epistemology. Ontology proper is characterized by an orien-
tation towards objects. This amounts to saying that the main concern of ontology is
the world in its many facets. Ontology models objects by resorting to concepts. It
uses concepts. Analysis of the structure and of the formal and material components
of the concepts we use to shape the world is the concern of a different discipline,
not a problem for ontology. In fact, it is epistemology that covers the field of the
theory of concepts.

The second of the above two oppositions (that between domain dependent and
domain independent ontologies) determines the possibility of elaborating a gene-
ral ontology. By definition, general ontology can only be domain independent. Oth-
wise it would simply be impossible to ask ourselves: “What ontological
categories would make up an adequate set for carving up the universe? How are
they related?” (Guha and Lenat, 1990, p. xvii). It is clear that if (general) ontology
provides a collection of general top-layer categories, an ontology is domain-inde-
pendent (Pirlein and Studer, 1995, 945). The opposite thesis, which claims that
ontology is always and only domain dependent, amounts to saying that general
ontology is a dream, something that cannot be the object of serious research.

The two oppositions taken together display a core general ontology. This core
ontology is therefore oriented towards objects, and it is domain-independent. As
an obvious corollary, the most spurious ontology will instead be oriented towards
concepts and will be domain dependent. In between there lie the two intermedia-
te cases.

On the other hand, it is also clear that definitions are not the last word on the
matter. We must look at the real work that effectively developed on their basis,
and for this more complex analysis more thorough development must be given to

the idea of ontology. Our problem therefore is (i) to trace the boundaries of ontology, (ii) to present its structure, and (iii) to find the scientific communities that have the pertinent expertise. The definitions of interest to us here, can be summed up as follows: ontology is the theory of objects. And it is so of every type of object, concrete and abstract, existent and non-existent, real and ideal. Whatever objects we are or might be dealing with, ontology is their theory (Meinong, 1960, Husserl, 1970; Whitehead, 1925; Poli, 1996, 2001).

2. The boundaries of ontology

Ontological information should be distinguished both from epistemological information and from quasi-ontological information.

2.1. Ontological vs. epistemological information

Defining the tasks and characteristics of ontology is important if we are to avoid confusion with epistemology; confusion that is often apparent in the literature. The difference can be evidenced by listing concepts of ontology and epistemology. Ontological concepts are: object, process, particular, individual, whole, part, event, property, quality, state, etc. Epistemological concepts are: belief, knowledge, uncertain knowledge, revision of knowledge, wrong knowledge, etc. If ontology is the theory of the structures of objects, epistemology is the theory of the different kinds of knowledge and the ways in which it is used. The ontological and epistemological perspectives interweave and condition each other in complex ways. They are not easily separable, amongst other things because they are procedures complementary to each other. The fact that there is a mutual or bilateral form of dependence between ontology and epistemology does not oblige us to conclude that we cannot represent their specific properties and characteristics separately. On the contrary, we should specify both what ontology can say about epistemology (a belief is a kind of object, it has parts and properties, etc.), and what epistemology can say about ontology (knowledge of the structure of objects is a kind of knowledge). This is a difficult task and mistakes are always possible, but there is no principled reason for denying its realizability, even if one understands why it is so easy to blur ontological and epistemological issues.

2.2 Quasi-ontological information

Ontology does not say everything that there is to say about every aspect of the world. Besides the distinction between ontological and epistemological analysis, a further distinction must be drawn between properly ontological information and quasi-ontological information.

Ontology should be able to say that a certain object is situated somewhere, or that an event has taken place at a certain moment. But it does not have to say the-
se things using the Gregorian calendar or a particular system of coordinates. We choose a system of measurement for every magnitude, but which system is chosen is purely a matter of convention, and the relative module should be substitutable if for some reason it becomes necessary to use some other system of reference (with appropriate adjustments). The same applies to many other aspects of design. Somewhere there will be a module in which the ontology is calibrated to the measurement systems employed, and to such other purely pragmatic aspects as the language of the user interface. Likewise, there must be a place in which naturals, connectives, some functions, and so on, are imported. But which particular version is used is not an explicitly ontological problem.

A further quasi-ontological category consists of what I call ‘signature’. This category furnishes information on who has made the categorization, where, when and how. Such information is not always relevant, but there are some contexts in which it is important: in medicine, for example, it is sometimes vital to know who has made a diagnosis. Aspects of this kind perform a role internally to a fully developed ontology, but they are not directly ontological components.

Before concluding this section, let me stress that, even if the range of ontological analysis is extremely wide, we should not interpret ontology as the science of everything from every point of view. There are many genuine problems that are not ontological problems. We should find a way to distinguish ontology from other scientific viewpoints. That is to say, ontology proper is not commonsense analysis, or linguistic analysis or logical analysis. It is not the theory of concepts, nor is it the theory of beliefs or of other mental attitudes. It is connected to all of them, but it is nevertheless different from them.

3. The structure of Ontology

In this section I will try to give a feeling of the highly complex structure of ontology—a much more extensive analysis is provided in Poli (2001). The first step is to distinguish between the categories that enable us to analyse the structure of objects.

3.1 Dependence Categories

The unity of the world is the outcome of the complex interweaving of dependence connections and forms of independence among the many objects of which it is composed. I shall seek to explain the features of this multiplicity by beginning with an apparently trivial question: what is there in the world? Numerous answers are available. For example, we may say that there are material things, plants and animals, as well as the products of the talents and activities of animals and humans in the world. This first prosaic list already indicates that the world comprises not only things, animate or inanimate, but also activities and processes and the pro-
ducts that derive from them. It is likewise difficult to deny that there are thoughts, sensations and decisions, and the entire spectrum of mental activities. Just as one is compelled to admit that there are laws and rules, languages, societies and customs. We can set about organizing this list of objects by saying that there are independent objects that may be concrete (mountains, trees, flowers, animals, houses and tables), or abstract (sets and other mathematical objects, propositions), and dependent objects which in turn may be concrete (colours and sounds, kisses, handshakes and falls) or abstract (formal properties and relations).

All these are in various respects objects of the world. Some of them are actually exemplified in the world in which we live; others have been exemplified in the past; and yet others will (hopefully) be exemplified in the future. Consequently temporality is the truly distinctive (specific) feature of reality (Brentano, 1995; Husserl, 1970; Hartmann, 1935), and we may state that reality is everything that is located in time. Whatever the entities considered, they are real if they are temporally characterized. This first finding already tells us that the natural inclination to regard space and time as equally fundamental aspects of the real world is, from an ontological point of view, inexact. Ontologically, space characterizes only certain entities, namely material ones. But there are many other entities that are not spatial: mental acts, for instance.

It is widely claimed that the mode of being of material things cannot be the same as that of thoughts, actions, states of mind or intuitions. On this view, truth and error are mixed because, as we have seen, to be real does not entail possession of materiality. Only things and living beings are spatial, while, as well as these, the events of the mind and social events are temporal.

Having established this, forms of dependence and independence operate among the various types of reality. In fact, the universal glue of any whatever articulated ontology is provided by the network of dependencies among its objects. We may distinguish at least three ontological strata of the real world: the material, the psychological and the social (Hartmann, 1935; Husserl, 1989). Specific forms of categorial and existential dependence exist among these strata. For example: a psychological object or event requires an animate physical object as its existential bearer. Should there be no person (and should there be no body of some such person), then neither will there be the correlative psychological states. Hypothesising forms of existential dependence does not entail resorting to more or less overt hypotheses of reductionism. The various ontological strata may be existentially constrained without this implying that they are categorically constrained. The categories or properties which enable us to describe the world of psychological states are different from the categories that enable us to describe the world of animate and inanimate objects.

A relationship of matter and form holds among many objects. In these cases, matter and form are correlative categories, so that any form may be the matter of a higher form, and any matter may be the form of a lower matter. The hierarchy thus constituted is a progressive overforming of matter and form. The nature of the physical world is clearly governed by this embedding principle: the atom is the matter of the molecule, but it is already an entity endowed with form; the molecule is the matter of the cell; the cell is the matter of the multi-cellular organism; and so on. In the matter/form relationship, matter is a constitutive part of the object that results from it. The atom is part of the molecule, and the molecule is part of the cell. If we possessed the equipment, we could dissect cells to reveal molecules, and molecules to reveal atoms.

However, not all the dependences that structure the world are of a matter/form type. When one moves from the organic to the mental plane, one finds a dependence relation that is not reducible to the matter/form relation. One cannot say, in fact, that atoms or cells or organisms are the matter of the mind. Organic reality takes atoms and molecules and assembles them into a new form, consciousness, which is nevertheless not made up of organic forms. In the passage from the material to the mental there arises a new series of forms whereby corporeal life with its forms and processes no longer functions as matter. The organic layers are mirrored in psychic life: they influence it, they follow close upon it, but they are not part of it (Hartmann, 1933). In effect, the life of the mind is not an overforming of corporeal life. It does not comprise organic processes, nor does it use them as its building blocks, even though it is supported by them and is influenced by them. One finds another break between the mental stratum and the social stratum. Mental acts do not constitute the objective contents of social reality, just as organic elements do not form part of the mind. In both the passage from living to mental phenomena, and in the passage from mental to social ones, the series of overformings is interrupted. In these cases the dependence relationship is no longer of matter/form type but becomes one of a completely different kind: a bearer/borne relationship. In this case, the substratum of the higher layer is not the matter of the lower layer (Hartmann 1952, 68-69).

Analysis of the dependences among objects therefore requires us to distinguish at least two fundamental relationships: that among the layers and that among the strata of reality (Poli, 1998, 2001, ch. 8). It may be thought that the distinction between strata and layers is unnecessary. In general, and in the absence of precise arguments claiming the opposite, I am on the Meinongian side: between two people (or two traditions) one of whom (or which) makes a distinction and the other does not, it is usually the case that the one who introduces the distinction has seen something that the other has not (Meinong, 1921; see also Mulligan, 1986; and Poli 1993/94). A terminological note may be of use here. For the sake of clarity,
I shall say that overforming relationships hold among ontological layers, while building-above relationships hold among ontological strata. Whereas by ‘overforming’ is meant that every category can constitute the ‘matter’ of a higher category, the term ‘building-above’ denotes a very different type of conditioning. In this case, the higher stratum requires the lower one only as its external basis of existential support, but not as matter to be supraformed. As we have seen, the ascending hierarchy of forms does not unfold without interruptions. It does not traverse the entire real world in a continuous sweep. On the contrary, there are (at least) two particular points at which the overforming process is interrupted.

Aristotle was right to stress the importance of the relationship between matter and form. His theory is still today substantially acceptable, if one remains within a particular ontological stratum. But it requires adjustment and development as soon as one considers the various strata of reality. In this case the matter/form relationship is inadequate and should be replaced with the bearer/borne relationship. The above description of the building-above relationship therefore enables us to state that there exist at least three different strata of reality. Of these strata, that of material reality (both inanimate and animate) acts as the bearer for the other two strata. The material stratum bears the stratum of mental phenomena and social phenomena. Belonging to the social stratum are all phenomena of communication, and therefore the complex of social phenomena and customs, economic and legal realities, history, language, science, technology and the body of knowledge of every epoch, and morals. That the social stratum differs from those of material and the mind, and that its categories are not reducible to those of these strata, should be obvious. Each stratum has its own principles, laws and categories. The nature of one stratum cannot be understood using the categories of another.

The dependence relationship among strata tells us that there are never minds without material bearers, and that there are never social phenomena without material and mental bearers. In further specification of the difference between overforming and building-above, one notes that if the world were structured by a single overforming relationship, the mind and the social would be made up of atoms, they would possess weight, and so on. Or we would have to say that mental and the social life ‘contain’ the organism (Hartmann 1933). The absurdity of these consequences suffices to highlight the difference between overforming and building-above.

Specific overforming relations organize the various layers distinguishable internally to each stratum. The forms assumed by this overforming are specific to each stratum and cannot be ingenuously generalized. In the material stratum, the overforming is mainly serial. The atom-molecule-cell example is sufficiently clear, but one should also remember the side-branches: man is an animal but not a plant. The mental and social strata exhibit overforming mechanisms which are
much more intricate than those that operate in the material stratum. In the case of
the social stratum, the various layers constitute a community of contexts with
numerous complex relations of dependence and reciprocal influence. On the
other hand, this segmentation into strata and layers gives rise to a different pat-
terning of complexity in objects. Higher strata and layers may be less complex
than lower strata and layers. Indeed, it is not always true that when one moves to
a higher layer, the complexity increases. Recent developments in systems theory
seemingly provide important confirmation of Hartmann’s theory of building-
above relationships. I cite by way of example the theory of autopoiesis and its
development in terms of social systems theory by Luhmann (1984).

Description of the strata and layers of reality intersects with description of the
objects of which it is composed. We humans participate in all three strata (al-
though we do not exhaust the multiplicity of any of them). We have a material
(organic) base, we have a mind, and we are simultaneously social beings. But our
material base is one of the many material bases offered by the natural world; just
as our mind is only one possible mind, and our participation in the social world is
never such that we can absorb it in all its aspects. For example, no individual pos-
sesses complete and absolute mastery of his or her mother tongue. The stratified
organization of reality should not be confused with the problem of the parts of a
whole, and whether all the parts of a whole are of the same nature as the whole.
Material objects may have non-material parts (for example, their centre of gra-
vity). But the strata of an object are not parts of the whole.

3.2. Top categories

The top categories employed by a well developed ontology derive from the
category ‘object’, and they themselves are objects. Each of them corresponds to
the traditional concept of ‘being’ or ‘entity’, but each of them forms a particular
context of analysis. As with the ancient analysis of transcendentals, it is always
possible to pass from context to another, but each context has its own specificity.

The analysis of strata and layers has shed light on some fundamental aspects
of the organization of reality, but it does not enable us to pass directly to objects.
The various strata of reality, in fact, do not coincide with the gradations of exis-
tent entities, although they intersect with them. They are not only strata of the real
world understood as a whole, but also strata of things themselves. Whatever
object we may wish to model, it is always something which exists somewhere in
time and which is made of some material or is the bearer of some material.

3.2.1. Object

I have already pointed out that I employ ‘object’ as a generic term. This is
proper, but it is not enough. In order to bring out the actual semantic value of

‘object’ one must also assume that objects are always ‘complex objects’. In other words, we must assume the ontological thesis that all objects are complex (the anti-atomicity argument). As Hacking states, “Logic, depth grammar, structuralism, and the like should postulate points of convergence or condensation, not atoms” (Hacking 1994, 30). To take up and generalize a remark by Bohm, we should “give up altogether the notion that the world is constituted of basic objects or ‘building blocks’. Rather, one has to view the world in terms of universal flux of events and processes” (Bohm 1994, 9). Simple objects are idealizations relative only to the realm of abstract objects.

The assumption of anti-atomicity entails a number of important consequences. Firstly, every object, precisely because it is complex, is a whole with parts (both as components and as functional parts). The complexity of the object also determines the fact that the parts of the object interact with each other according to various kinds of dependence internal to the object. This means that an object has a structure and consequently structural stability. But this is not enough. If objects are complex, it is natural to distinguish an interior from an exterior (environment) and to posit the presence of a frontier (boundary) between them. Secondly, an object, besides being a whole with parts, is also a substance with determinations. These determinations tell us what the object is, in the various ways that this can be stated (for example, both that ‘it is_white’ and ‘it is_an_animal’). Its substance consists of whatever underlies and unifies the various determinations. A third aspect concerns the complexity of those objects which are structured into several layers (material, biological, etc.). In this case, we must not confuse the part-whole and substance-determination structurings with structuring by strata and layers. Fourthly, the object “is something on which one can have a perspective (Smith 1996, 117). This in turn entails that “the presence of an object inherently involves its absence. The reason is simply the standard one: in order for a subject to take an object as an object, there must be separation between them – enough separation to make room for intrinsic acts of abstraction, of detachment, of stabilization. So it is essentially an ontological theorem that no object, for any given subject, will be wholly there, in the sense of being fully effectively accessible. Or to put it more carefully: in order to be present, ontologically —i.e., in order to be actually present— an object must also be (at least partially) absent, metaphysically, in the sense of being partly out of effective reach (Smith, 1996, p. 232-233). I have used ‘actually’ for Smith’s ‘materially’.

Generally speaking, all represented objects are intrinsically incomplete objects, and this is because every represented object is intrinsically connected to a specific perspective. The objectivity of the object is the aspect which stabilizes the situation by systematically coordinating possible perspectives with the so-called perspective ‘from nowhere’ (Poli 2001, ch. 4).
3.2.2. Process

Whatever exists in space-time has temporal and spatial extension. Everything said in the last section about the category ‘object’ must now be repeated about the category ‘process’. From my point of view, the categories ‘object’ and ‘process’ are equivalent, so that the following phrase from Uexküll quoted by Lorenz (1973) chimes perfectly with my position: “an object is that which moves together”. The only difference between object and process is that, in relation to the categorizing actor, the apparent constancy of objects stems from the fact that the object changes much more slowly than the subject. As Hartmann (1933) points out, what we call a ‘thing’ is only a stage of relative stability within a process. Like objects, all real processes —i.e. all processes able to exert some influence— possess some degree of stability (Thom 1972). From what has just been said, however, it is clear that ‘stable’ “does not mean static or atemporal!” (Smith 1996, p. 258). Everything that is dynamically real is partially stable, and consequently also potentially unstable because stability is always stability relative to the interior of the everchanging universal flux. Like all the other categories, also the category of ‘process’ imports its typical structures into ontology. In this case we have the various stages typical of every process, which consist at minimum of the initial stage of the beginning, the stage of ‘presence’, and the final stage of the end.

3.2.3. Substance

‘Substance’ is what remains identical in the continuous series of interrelated changes constituting the process. Hence, “substance does not lie outside process but is in it as that which perseveres” (Werkmeister, 1990, p. 106). Since the substance is what remains constant in the process, it is essential to understand that the substance is functionally dependent on the process. Given a process that enjoys some minimal condition of stability, we may assume that there is something constant within it and we may seek to analyse and describe this something constant within the process.

3.2.4 Whole and Part

Classical physics is characterized by an in-built analysis of the world into constituent parts (such as atoms or elementary particles). These are then recomposed together to provide, by means of synthesis, any system; interactions are linearly and locally described; the resulting hierarchy of structures is grounded on such constituent parts. On the other side, in contemporary science, the age of pure analysis seems to have ended. It is well known that non-linear systems have properties that, in general, cannot be expressed in terms of decomposition into ultimate, unstructured, pointlike parts plus a suitable sets of relations among them.

In general, what is it that characterizes wholes? Exemplification of whole as
something connected may be acceptable for objects of the physical or biological world. But what about social wholes (like ‘family’ or ‘community’) or institutional ones (like ‘university’ or ‘city’)? These too are wholes, they have their history, properties, parts, and so on, but they are not connected. Or they are not connected in the same way as a material object.

We may make use of the concept of integrality to characterize wholes. But it is evident that something can be a whole even if it is not (an) integral. For example, a man whose hand has been amputated is still a whole, but he is not (an) integral. To use a definition that dates back to Aristotle, an integral is something which has all that parts that by nature it should have, although it is not easy to clarify what the expression ‘by nature’ means. In any event, what emerges from the example that I have deliberately chosen is that the expression ‘by nature’ does not necessarily relate to something like ‘essential part’. Whatever definition of essential part one (perhaps) accepts, it not obvious why a hand should be deemed an essential part of a man, unless we resort to a universal version of so-called mereological essentialism, which states that a whole is always essentially composed of its parts.

We must therefore follow a different route. A promising line of attack is recognition that a whole comprises different types of parts and different types of relation among parts. Put more precisely, the various parts of every type and their reciprocal relations constitute structures, which contribute to some aspects of the whole. At minimum we can ask ourselves: 1) whether the part is separable from the whole; 2) whether the parts are spatial or temporal; 3) whether the part plays a specific functional role with respect to the whole; and 4) whether the parts are homeomorous. Secondly, every whole has a boundary which separates it from its environment. By virtue of possessing boundaries, a whole is something on the basis of which there is an interior and an exterior. Put in different but not alternative terms, we may also say that a whole is something which displays some form of independence with respect to an environment. Observing that, when analysed at a sufficient layer of detail, every whole vanishes into a continuum, or according to which every whole depends on something else, does not raise major difficulties. The fact that the boundaries of the whole are not absolute does not imply, in fact, that these are purely apparent boundaries. Wholes and their boundaries are realities which effectively operate at the appropriate layer of granularity. Thirdly, many wholes are themselves composed of other wholes. In dealing with wholes composed of other wholes, the problem arises of calibrating the ‘weight’ of the more general whole with respect to the ‘weight’ of the boundaries of its component wholes.

I now conduct more detailed discussion of the difference between separable and non-separable parts.
3.2.5. Separable and non-separable parts

However difficult it may be to specify the distinction between separable and non-separable parts, a preliminary definition of the difference may be forthcoming from examination of the case of inanimate material objects. In this situation, we may call separable parts those which can be removed from the whole without anything else taking their place. The exact meaning of ‘remove’ depends on the type of object. An inanimate object behaves differently from an animate, psychological or institutional object. If we take a physical object like a chair, a part of it which can be removed is for example the back or the legs. The removal of separable parts may have a destructive effect on the whole.

Non-separable parts are instead those which can be recognized and distinguished but which cannot be removed (Husserl, 1970, 3rd Investigation). There are various kinds of non-separable part. At minimum we may distinguish: functional parts (sub-systems), qualities, boundaries, and de facto non-separable parts. The general non-separability of a system’s functional parts or functional sub-systems depends on the fact that the nature of sub-systems is determined by the nature of the whole. Consider the eventuality of separating the electrical or braking system of a car, or the nervous system of an animal.

The non-separability of qualities is a non-separability of kind, not of instance. When some quality is ‘removed’ from the whole, a part of the same kind usually takes the place of the part that has been removed. In effect, what is really inseparable is not so much the individual part qua part as its genus. If I remove the colour red from a table, it becomes of another colour or it assumes another colour, but it is still in some way coloured. For categories like colour, weight, shape, size, consistency, etc., material objects are structured in such a way that they may display different instances of these categories in the course of their histories, but they nevertheless always have them. A table may be of different shape, colour, weight, consistency, etc., but it will always have a certain specific shape, colour, weight, consistency, etc. Everything that we usually call a property or quality or attribute belongs to this class. I then distinguish both types of part into further sub-categories. For separable parts I distinguish between the case in which all the parts are given simultaneously (and I obtain things, systems, aggregates) and the case in which they are given in succession (and I obtain processes and events). Boundaries, finally, are also non-separable parts. The last type of non-separable part comprises de facto inseparable parts. The property of being separable differs between things and events. Separable in the case of things is whatever can be placed somewhere else, while in the case of events it is whatever can be placed in another temporal moment. Despite this difference, the concept is clear: separable is whatever can be placed elsewhere in space or time. In fact, however, it often happens that also the spatial or temporal parts of a whole
are not at all separable. If we consider the case of artifacts, their material parts can be melted, glued, milled, welded, filed, sanded, drilled, bent, or at any rate subjected to processes whereby they are no longer separable (Simons and Dements, 1996). Similar objections can be raised with reference to biological and social particulars. Regarding biological particulars, it is asserted for example that not all the separable parts in a body are in fact separable. A finger or a hand is separable, but a head is not, because in this case what we have no longer have a body but a corpse. The same applies to many social wholes. A quartet without one of its members is no longer a quartet, at most it is a trio.

We must conclude from these examples that separability is a sufficient but not necessary condition for being a part. It is said in these cases that everything that is separable is assuredly part of an object, but not everything that is a part is really separable. In other words, it is stated that, for the reasons just given, ‘separable’ should not be taken to mean ‘effectively’ or ‘concretely’ separable, but ‘virtually’ or ‘ideally’ separable. A conclusion of this kind seems plausible but it enormously complicates the problem. First of all, it should be noted that the difficulties that arose in the preceding analysis all connect with questions concerning the identity of parts or wholes. If we run down the list of examples, we see that the troublesome cases are of the type: once the parts have been detached from the whole they are different from what they were when incorporated into the whole (problem of the identity of parts, which applies for example to pieces), if certain parts are removed from the whole, the latter becomes a different type of whole (body-corpse, quartet-trio). But these are problems more closely connected with the identity of parts and wholes than with the part-whole relation. Consequently, we must keep questions of identity separate from questions to do with the ‘part-of’ relation. If we set problems of identity aside, it becomes natural to define ‘part’ as anything that can be separated from the whole, even if the actual separation may have the effect of changing the qualitative nature of the whole, or even of destroying it. With the appropriate variations, the difference between separable and non-separable parts holds for every type of whole.

Parts are not wholes, but they can always be transformed into wholes. Let us start from a whole, with its dependent parts, its boundaries, etc. In principle it is always possible to take a part of that whole and analyse it as a whole. This means that the element is analysed in and of itself, without being considering in terms of its connections / functions / dependences vis-à-vis the whole with which we started. The various types of parts react differently to analysis. From an ontological point of view, separable parts are potentially wholes. This means that we can analyse parts without subjecting them to ontologically significant transformations. By contrast, non-separable parts only become wholes as the result of a reification process (i.e. a process which transforms them from dependent entities...
into independent ones). The same procedure of ‘reification’ or ‘autonomization’ applies to all forms of dependence.

4. Dependences, everywhere!

From an ontological point of view, the theory of dependence analyses the deeper-lying connections that enable us to say that the world is one world. I have already said that there are various forms of dependence. In particular, I distinguished among four forms of dependence: stratum- and layer dependence, substance-determination dependence, part-whole dependence, and kind dependence. Stratum-layer, substance-determination and whole-part dependences have already been discussed; kind dependence will be discussed in the next section.

5. Kinds

We will say that anything with a certain structural unity is something of a certain kind. For an object to be an object of a certain kind its general determining properties, those that make it a member of a kind, must be describable in terms of appropriate generalizations. Let us assume that in the case of natural kinds, these generalizations are the laws used by the sciences: which amounts to saying that “if we are to produce an interesting account of natural kinds, we should insist that members of natural kinds… must lend themselves to scientific explanation” (Wilkerson, 1995, p. 31).

I begin with the distinction between natural kinds and dependent kinds. In general, there is broad agreement that electron, proton, neutron, narcissus, chimpanzee, stickleback, carbon, gold and water are natural kinds, whereas table, nation, banknote, rubbish, cliff, perennial and bush are not. It is likewise generally agreed that, if there are natural kinds, they fall into at least two groups. There are kinds of stuff, such as carbon, gold, water, cellulose, and there are kinds of individual, such as tiger, chimpanzee, stickleback, narcissus. On the other side, we may distinguish non-natural kinds into functional kinds, such as table and banknote, and contextual kinds, such as cliff and bush.

I assume that appropriate generalizations with regard to functional kinds are linked to the practices, disciplines and technologies employed to name, recognize, classify, use, produce and alter the objects that belong to them. This variegated complex of cognitive and operational practices can be given the general label of technologies. Obviously, there is no clear-cut distinction between sciences and technologies: science is involved in numerous technologies, and technologies use the most varied of sciences. AI in particular is a practice that raises numerous important scientific problems and compels even very well-consolidated sciences to reconsider their theories. As mentioned, I shall discuss functional kinds with
reference to technologies. The argument that I wish to develop is that the relation that connects natural and functional kinds is of the same nature as the relation between sciences and technologies. The other case concerns those situations in which the appropriate generalizations depend on the context concerned. Obviously, in this case discussion will centre on contextual kinds.

I now examine these cases in some detail. First, it is advisable to dwell for a moment on the difference between sciences and technologies. The key reason for linking the natural kinds to the sciences is that the latter, however much they are obviously interconnected, represent irreducibly different points of view. “An excellent reason for taking biology seriously is that the biological properties of things obviously depend directly on their physical and chemical properties. But the explanatory apparatus of biology cannot in practice be reduced to the explanatory apparatus of physics or chemistry or both” (Wilkerson, 1995, p. 39). Any science has its own ‘window’ on the world, selecting (through the pertinent predicates) only those objects that are at the ‘right’ layer of magnitude and energy.

On the other hand, the explanatory apparatus of technologies, “though no doubt relative to a fairly high layer of size or complexity, is not emergent. It is, as it were, perpetually provisional, and is constantly being reduced to, or connected with, or supplanted by, the explanatory apparatus of some discipline characteristically concerned with entities of some lower layer, notably physics, chemistry and biology”. In other words, “geology and geography would be impossible if there were no physics and chemistry of the various elements and compounds that constitute our planet” (Wilkerson, 1995, p. 40).

Therefore, we will say that objects whose structural unity is described by sciences are objects of a certain natural kind, whereas objects whose structural unity is described by technologies are objects of a functional kind. In his theory of natural kinds, Wilkerson defines them in terms of three conditions: (i) possessing real essence, (ii) being subject to scientific investigation, and (iii) being determined by an intrinsic property. For my part, I do not see how conditions (i) and (iii) can be precisely specified, for which reason the reconstruction set out in this chapter almost wholly uses condition (ii). For the time being, I resume Wilkerson’s analysis of contextual kinds.

Contextual kinds can be well represented by the following examples: “Gardeners talk cheerfully of seedlings, saplings, trees, shrubs, bushes, climbers, perennials, annuals, pot plants, and so on, but none of these terms pick out a real essence; none are likely to appear in reports of serious scientific investigation; and none refer to a kind determined by an intrinsic property. One and the same plant will grow as a tree under one set of conditions and as a shrub under others (e.g. many Eucalyptus and Acer species). One and the same plant will be an annual or pot plant in a temperate European climate and a shrub in a hot African climate.”
climate (e.g. Pelargonium species). One and the same plant is a shrub in western Ireland and a hardy perennial in Nottingham (e.g. Fuchsia magellanica). None of those terms pick out an intrinsic property and none of them correspond, even approximately, to any botanical classification”. “Yet none of the terms has any connection with convention, artifice or culture” (Wilkerson, 1995,p. 37).

Wilkerson notes that the same point can be made about geographical and meteorological kinds: “Geographers talk of beaches, cliffs, mountains, valleys, seas and volcanoes. Meteorologists talk of depressions, anti-cyclones, winds, thundersstorms, clouds and hurricanes. But the terms do not pick out things with real essences, they do not figure in scientific generalisations and they do not pick out any relevant intrinsic properties. One and the same lump of material will count as a mountain in one environment, as a valley floor in another, and as part of the sea bed in yet another. One and the same reaction counts as a thunderstorm if it happens on a large scale in the open air, but if it happens under the bonnet of my car it is called a short circuit and my car fails to start” (Wilkerson 1995, 37-8). In what follows I shall assume the fundamental hypothesis that, for each of their ontological layers, all objects belong to at least one natural kind and to one or more dependent kinds (functional or contextual). For any layer, the natural kind of every object is connected with the causal links of the object. In this sense, the scientific point of view differs from the functional and contextual point of view in that the former seeks to ‘isolate’ the causal connections that determine the individual object independently of its functional or contextual kinds. Let us consider ‘table’ or ‘rubbish heap’ and try to understand why these objects as such are not natural kinds. Wilkerson explains the matter limpidly: “If I know that the stuff in front of me is rubbish, or that the object over there is a table, I am in no position to say what it is likely to do next, nor what things of the same kind are likely to do… Obviously I can make safe predictions about the behaviour of my table or rubbish heap under certain circumstances. I know the likely outcome of putting my kitchen table on the bonfire, or of leaving a heap of vegetable waste undisturbed in a hot climate. But the point is that, in making my predictions, I am exploiting the fact that every object, or quantity of stuff, will belong to at least one natural kind, even if it also belongs to one or more non-natural kinds … I am not predicting the behaviour of the table as a table, but rather its behaviour as a quantity of cellulose … As Aristotle remarked: a bed and a coat and anything else of that sort, qua receiving these designations … have no impulse to change. But in so far as they happen to be composed of stone or of earth or of a mixture of the two, they do have such an impulse, and just to that extent (Physics II,1, 192b16-20)” (Wilkerson, 1995, p. 32-34). Put in general terms, natural kinds codify the causal network that govern the internal dynamics of objects.

The reference to internal dynamics may be nothing more than a modern version of a thesis, which, as we saw in the quotation from Wilkerson, dates back to

Aristotle. For Aristotle, in fact, plants and animals have a special ontological status because they possess ‘nature’, whereas he connects the doctrine of natures with a doctrine of independence. Plants and animals are natural kinds because their existence does not depend on the existence of other objects. “What makes a chimpanzee a chimpanzee, or a daffodil a daffodil… is its intrinsic nature, that is, a feature that does not depend on the existence of something else”. “In contrast, what makes something a table or a bed or a house depends crucially on its relations to something else. For example, something is a bed if and only if it can act as a comfortable nocturnal resting place for human beings” (Wilkerson, 1995, p. 25). Hence the distinction between natural and dependent kinds is made to depend on the distinction between intrinsic properties and relational properties. The problem is only postponed, however, because it is unclear what criteria should be used to delimit the intrinsic properties. Consequently, my decision to rely primarily on the network of causal connections seems distinctly plausible. Above I drew the distinction between the functional and contextual families of dependent kinds.

Functional dependence states that certain things exist only in virtue of a relation to something else. Say, “something is a fuel pump because of a functional relation to an internal combustion engine, and something is a pillar because of its functional relation to a bridge or a roof. In other circumstances the fuel pump might be a water pump, and the pillar might be hardcore for a new road”. Functional dependence may also be conventional. As Wilkerson reminds us, “sometimes an object is what it is because of a definite, though perhaps implicit, convention. Certain lumps of metal or pieces of papers are coins or banknotes because, according to a statute or statutory instrument, they can be used as a means of exchange” (Wilkerson, 1995, p. 52).

However, the introduction of dependent kinds does not resolve matters entirely. For example, “whether or not a plant is a tree or a shrub has nothing to do with its relational dependence upon something else. If it has a single woody stem and breaks into branches some feet above the ground, it is a tree, and if it is woody and breaks into many stems very close to the ground, it is a shrub” (Wilkerson, 1995, p. 54). To account for this situation we must introduce, besides the natural kinds and the dependent kinds, also hybrid kinds: “The kind vegetable is a hybrid of natural and dependent kinds. It is strictly not a natural kind, for it includes plants of different species, even of different genera and families, in a way that does not correspond even approximately to any formal taxonomy. Other examples of that sort of hybrid are fruit, pot plant, herb, pet…, cattle, medicine” (Wilkerson, 1995, p. 57-8). Hybrid kinds may be highly specific: “Farmers and greengrocers divide apples into the kinds dessert, cooker and cider, and butchers distinguish the kinds ham, bacon and pork. The first distinction is at best a distinction between layers of acidity, and has little botanic significance… and the
second distinction reflects the different ways in which pig carcasses are cured”

As the above examples show, a minimally adequate theory of kinds must be able to distinguish not only among natural, functional and contextual kinds but also among the various cases of hybrid ones. The theory of kinds presented in the above section is synthesised in Table 1.

6. Overall architectonic

At minimum, an adequately developed ontology should be able to distinguish among: a) general ontology (top layer categories and oppositions, plus their dependence connections); b) domain ontology (analysing an ambit of reality, which is usually given by a specific set of phenomena belonging to diverse ontological strata), e.g. medicine, artifacts; and c) applied ontology (described in terms of its use). Let us look at the general features of these ontologies, beginning with general ontology.

General ontology concerns itself with (i) top categories, and (ii) their dependence connections. Regarding categories, we are growing increasingly aware that the top layer is a context which is extremely difficult to handle. For this reason it is of maximum importance to employ an organization of the top categories that is as transparent as possible.

As we have seen, there are general categories that apply to all the ontological strata: for example, the category of ‘part’, which means that ‘part’ is a category of the general ontology. However, the fact that this is a general category does not entail that it is a univocal category. In effect, the concepts of ‘part’ that apply to the material stratum differ substantially from the concepts of ‘part’ typical of the mental or social strata. Note the deliberate use of the plural here: concepts of ‘part’ are not only different from stratum to stratum but they may also be different from

Table I. Theory of kinds.

<table>
<thead>
<tr>
<th>Kinds</th>
<th>1. Natural</th>
<th>2. Dependent</th>
<th>3. Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.1. Stuff</td>
<td>2.1. Functional</td>
<td>3.1. Between 1 and 2</td>
</tr>
<tr>
<td></td>
<td>carbon, gold, water</td>
<td>table, banknote</td>
<td>vegetable, fruit, medicine</td>
</tr>
<tr>
<td></td>
<td>1.2. Individual</td>
<td>2.2. Contextual</td>
<td>3.2. Between 2.1 and 2.2</td>
</tr>
<tr>
<td></td>
<td>tiger, stickleback</td>
<td>cliff, bush</td>
<td>surfing beach, biennial</td>
</tr>
</tbody>
</table>

Glancing at the problems of contemporary ontology

layer to layer. We are therefore in need of both an extremely general characteriza-
tion of ‘part’ and of specifications of ‘part’ for each ontological layer. However
much the various top-layer categories may assume different values in the different
strata of the ontology, they must nevertheless have something in common. Althou-
gh ‘part-of’ differs as regards inanimate and animate objects, in both cases
we always speak of ‘parts’ and distinguish ‘parts’ from the other categories.

We know that each ontological layer is characterized by the presence of a
group of categories typical of that layer. The first task, therefore, is to find the most
general categories typical of that layer. There will then be groups of categories that
mark out particular sub-layers. The ontology of medicine, for example, is an area
in which certain of its components clearly belong to a sub-domain of the living
world, while others pertain to sub-domains of the psychological and social sphe-
res. I use the term ‘domain ontology’ to refer to the detailed structuring of a con-
text of analysis with respect to the sub-domains of which it is composed.

Two important points require making as regards the use of this approach. The
first is that one always talks of groups of categories. There are no real domains
categorized by one single top-category. In general, a domain is characterized
by complexes of categories which interact with each other. The second point is
that domain ontologies are not solely the outcome of the way a particular ontolo-
gical stratum is sliced up. Domain ontologies, in fact, are often the result of a
complex combination of local realms belonging to different ontological layers
and strata. Consider for example the case of artifacts. These are at minimum
objects of the inanimate material world. To characterize their ontology, however,
we must examine other dimensions as well, like the ‘design’, ‘manufacture’ and
‘marketing’ of artifacts, and these are dimensions of the social world. The onto-
logy of artifacts is therefore an ontology that operates crosswise to the sequence
of the ontological layers and strata. The same applies to the previous example of
the domain ‘medicine’. It is this ‘transversality’ that makes the categorization of
many domain ontologies such a complex undertaking.

By ‘applied ontology’, finally, is meant exactly what the name implies: the
concrete application of the ontological framework to a specific object (a particu-
lar hospital, for example) (Poli, 2001).

7. Standards

It is entirely obvious that ontology qua technology is still in its early stages.
At the moment, the research community seems to have reached broad agreement
only on the fixing of linguistic or formal standards. In this area, KIF and
Ontolingua are rapidly becoming accepted and well-established standards of
exchange and translation. This is certainly an important development, but it is

one that can be called authentically ontological only by illegitimate extension of
the concept of ontology. Translation standards are not ontological components; if
anything they are quasi-ontological ones.

An example may be of help. We all know that in recent years important stan-
dards for software construction have become established. One thinks, for example,
of the Standard Template Library (STL) developed by A. Stepanov for the C++. This
is certainly a positive step forward, but it is one that involves formal compo-
nents, not ontological ones. We shall be able to talk of similar development in onto-
logical terms only when we have a Standard Template Library for ontological cate-
gories and constructs: to use, for example, in structuring analysis of the levels of
objects and their forms of dependence and independence, in analysis of categories
like process, thing, event and whole. At an intermediate layer, so to speak, between
ontological and cognitive analysis, it would be extremely useful to have templates
available for analysis of the categories used to recognize and classify reality, just as
it is essential to have sophisticated tools for the analysis, construction and organi-
zation of lexical fields. All this, however, still seems a long way off. And this is no
accident: we have a long way to go because, amongst other things, there is still no
general consensus even on the general features of an ontology and on the features
of whatever should accompany ontological analysis.

For this reason the most urgent task is to continue with the work of concep-
tual clarification of categories and of their organization. In effect, it is plain that
each of the topics addressed in the various sections of this paper calls for further
inquiry, and that several areas of ontology have yet to be explored. If we look at
the literature we soon realize the extent to which analyses have lacked systema-
ticity. For instance, whereas in the last fifteen years there has been an enormous
burgeoning of interest in the concept of PART, this is certainly not the case of the
correlated and ontologically more important concept of WHOLE.

8. Co-operations

From all what I have written, it is clear that ontology needs the contributions
of mathematicians, logicians, linguists, psychologists and philosophers. Collabo-
ration with philosophers is possibly the most difficult and even upsetting one, because getting to grips with philosophy —in the area of both analytic phi-
losophy and of what is known as continental philosophy— is a difficult and even frustrating business.

Philosophy in the English-speaking world is almost exclusively analytic. It is a
philosophical paradigm, by now in decline, whose legitimate effort to conduct rigo-
rous and methodologically correct inquiry has been reduced to impotence by two
assumptions. First, analytic philosophy shares with the mainstream of continental
philosophy an epistemological error whereby ontological problems and inquiries are converted into the problems and inquiries of the theory of knowledge. Second, analytic philosophy differs from continental philosophy in its assumption that philosophy is analysis of language. Matters are no better as regards continental philosophy, which besides the epistemological fallacy mentioned above, suffers from at least one further shortcoming: its general lack of methodological rigour.

Much of the decadence of contemporary philosophy is attributable to the fact that the two most influential philosophers of the last fifty years —Wittgenstein and Heidegger— rejected the alliance between science and philosophy. One can only hope that contemporary philosophers will come to realize that they have blundered into a blind alley and will revert to a more natural standpoint.

If philosophy is naturally allied with science, the philosophers to whom we refer can only be philosophers who have acknowledged the alliance between philosophy and science. I set out earlier the reasons why the most recent proposals of both analytic philosophy and continental philosophy are unsuitable for our purposes. We must accordingly take a step backwards and see whether immediately previous philosophy has something useful to offer. And, in fact, we find in German-speaking philosophy of the late nineteenth and early twentieth centuries a group of thinkers who defend the two principles of alliance with science and the autonomy of ontological problems. The latter principle states that ontological problems cannot be reduced to those of the theory of knowledge. This position was first set out by Franz Brentano, who declared that “the genuine method of philosophy is none other than that of natural science” (Brentano 1968), and it was developed in numerous directions by Brentano’s pupils: most notably by Edmund Husserl and Alexius Meinong, or Roman Ingarden, who studied under Husserl. Another German thinker who, although he studied neither under Brentano nor under his pupils, nevertheless reflected their doctrines, and Husserl’s especially, is Nicolai Hartmann, perhaps the most important ontologist of this century. A philosopher in the English-speaking world to have argued substantially similar positions —although one not directly influenced by the above authors— has been Alfred North Whitehead.

9. Framing the ontological problem

It seems possible to say that in this essay I have elaborated what might be called a possible framing of the ontological problem. I use the term ‘frame’ rather than ‘analysis’ or even ‘solution’ because numerous problems obviously remain due to the lack of both detailed analysis of the ontological categories and of a method for the formal translation of the ontological categories and their dependences. The principal of these still open problems, I believe, are the following five: the development of a paradigm or of a template able to account for the
stratified nature of reality, the functional nature of substance, the development of an adequate concept of whole, the elaboration of criteria for the determination and distinction of natural and derived kinds, and the elaboration of a theory of ontologically transparent dynamics.

To use Husserl's way of speaking, these are problems pertaining to the 'material' side of ontology and they are clearly intertwined with the 'formal' side of ontology. The problem arises when—as is customary today—formal ontology is forced to directly imitate formal logic. As far as I know, a detailed formal ontology so explicitly linked to the outcomes of a well elaborated material ontology has still to be produced.

10. Conclusion

Ontology needs the achievements of all the sciences if it is to accomplish its aims. Even if we accept the Philosopher's claim that, by virtue of the problems it addresses, ontology is philosophia prima (first philosophy), because of the answers it proposes ontology can be only philosophia ultima (last philosophy). In between there is science.

Broadly speaking, the variously articulated research communities of philosophers, linguists, psychologists and engineers have still not found a way to relate to each other systematically. However, in dynamic terms, one easily foresees mounting social and institutional pressure for tools able to model fragments of reality in terms that are both adequate and efficient. And from this point of view, we are all at fault. Those colleagues who concern themselves with artificial intelligence seemingly pay closer attention to manipulation and technique than to knowledge. Likewise, those who concern themselves with general issues suffer from the reverse problem, that of navigating in a sea of theories for which the rationale is sometimes unclear. For my part, I grow increasingly convinced that the same problems will force the former to address theories, and the latter to address the limitations of our current capabilities. Provided, that is, that both sides have the will, the ability, the desire and the courage to do so. If they decide to tackle these problems, it becomes reasonable to identify and systematically develop those areas of convergence and contact now existing.

10. References

