Visualizing open research data using knowledge graphs
methodology and application of DDI-RDF and DataCite Ontology
DOI:
https://doi.org/10.54886/scire.v30i2.4963Keywords:
Knowledge graphs, Data visualization, Open research data, Data exploration, Knowledge discovery, DDI-RDF, DataCite OntologyAbstract
The use of knowledge graphs to visualise open research data is analysed. It explores the background, development and levels of application of knowledge graphs. A methodology for data management and analysis is presented using knowledge graphs, semantic vocabularies and ontologies such as DDI-RDF and DataCite Ontology. Two sets of open research data related to musicology and earth and environmental sciences were processed. These data were located in the e-CienciaDatos and CORA repositories respectively. The aim was to contrast the handling and visualisation of textual and numerical data in order to identify their respective analysis variables. It was found that the visualisation of the visualisation of data through the use of knowledge graphs allows for the intuitive and interactive identification of patterns in the data, which refer to an interaction between its various creators and actors. Knowledge graphs are seen as a tool that allows the visualisation of large amounts of data, because in the era of artificial intelligence and big data, they can be a method for identifying complex behaviours that serve as a latent decision-making tool.Downloads
References
Ávila, E. (2021). La investigación del SARS-CoV2 mediante el uso de datos abiertos y grafos de conocimiento. // Torres Vargas, G. (coord). La pandemia por COVID-19: un acercamiento desde la bibliotecología y los estudios de la información. México: UNAM, Instituto de Investigaciones Bibliotecológicas y de la Información, 2021. https://ru.iibi.unam.mx/jspui/bitstream/IIBI_UNAM/248/1/02_pandemia_covid_eder_avila.pdf.
Bosch, T.; Cyganiak, R.; Gregory, A.; Wackerow, J. (2013). DDI-RDF Discovery Vocabulary: A Metadata Vocabulary for Documenting Research and Survey Data. // Proceedings of the 6th Linked Data on the Web (LDOW) Workshop at the World Wide Web Conference (WWW). Río de Janeiro, Brasil, (Mayo 2013).
European Commission: DG RTD (2017). H2020 Programme Guidelines to the Rules on Open Access to Scientific Publications and Open Access to Research Data in Horizon 2020. Version 3.2. Unión Europea. https://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-pilot-guide_en.pdf.
Gandhi, P.; Pruthi, J. (2020). Data Visualization Techniques: Traditional Data to Big Data. // Anouncia, S. Margret, Gohel, H. A.; Vairamuthu, S. (eds). Data Visualization: Trends and Challenges Toward Multidisciplinary Perception. Singapur: Springer, 2020, 53-74. https://doi.org/10.1007/978-981-15-2282-6_4.
Heath, T.; Bizer, C. (2011). Principles of Linked Data. // Linked Data: Evolving the Web into a Global Data Space. Estados Unidos: Springer International Publishing, 2011. Synthesis Lectures on Data, Semantics, and Knowledge. https://doi.org/10.1007/978-3-031-79432-2_2.
Hogan, A.; et al. (2022). Introduction. // Hogan, A.; et al. (eds). Knowledge Graphs. Cham: Springer International Publishing, 2022, pp. 1-4. Synthesis Lectures on Data, Semantics, and Knowledge. ISBN 978-3-031-00790-3. Disponible en: https://link.springer.com/10.1007/978-3-031-01918-0_1.
Jia, J. (2020). From Data to Knowledge: The Relationships Between Vocabularies, Linked Data, and Knowledge Graphs. // Journal of Documentation. 2020, 77: 1, 93-105. https://doi.org/10.1108/JD-03-2020-0036.
Kejriwal, M. (2019). What Is a Knowledge Graph? // Kejriwal, M. (ed). Domain Specific Knowledge Graph Construction. Cham: Springer International Publishing, 2019. 1-7. Springer Briefs in Computer Science. https://doi.org/10.1007/978-3-030-12375-8.
Koltay, T. (2015). Data Literacy: In Search of a Name and Identity. // Journal of Documentation. 2015, 71: 2, 401-415. https://doi.org/10.1108/JD-02-2014-0026.
Liang, S. (2023). Knowledge Graph Embedding Based on Graph Neural Network. // IEEE 39th International Conference on Data Engineering (ICDE). 2023, 3908-3912. https://doi.org/10.1109/ICDE55515.2023.00379.
Martin-Nieva, H. (2023). 20th-Century Art Music in Barcelona (Spain): Concerts and Record-Listening Sessions in Small Venues (1948-1960). CORA. Repositori de Dades de Recerca, 2023, v.1, UNF:6:nMxSxYPA0RomDlucN6Uhow== [fileUNF]. DOI: 10.34810/data926.
Rubio-Cuadrado, Álvaro; Camarero Martínez, Jesús Julio; Gonzalez Gordaliza, Guillermo Jose; Cerioni, Matteo; Montes, Fernando; Gil Sanchez, Luis Alfonso (2020). Datos de dendrocronología y competencia de El Hayedo de Montejo. https://doi.org/10.21950/VEQWPI, e-cienciaDatos, V1; Competencia.csv [fileName]
Michailidis, G. (2008). Data Visualization Through Their Graph Representations. // Handbook of Data Visualization. Berlín, Heidelberg: Springer Berlin Heidelberg, 2008. https://doi.org/10.1007/978-3-540-33037-0.
Muniswamaiah, M.; Agerwala, T.; Tappert, C. (2023). Big Data and Data Visualization Challenges. // IEEE International Conference on Big Data (BigData), diciembre 2023, 6227-6229. https://doi.org/10.1109/BigData59044.2023.10386491.
Rubio-Cuadrado, Á.; et al. (2020). Datos de Dendrocronología y Competencia de El Hayedo de Montejo. e-cienciaDatos, 2020, v.1. DOI: 10.21950/VEQWPI.
Shotton, D.; Peroni, S. (2022). The DataCite Ontology https://sparontologies.github.io/datacite/current/datacite.html.
Sonawane, S.; Mahalle, P.; Ghotkar, A. (2022). Knowledge Graph. // Sonawane, S.; Mahalle, P.; Ghotkar, A.; eds. Information Retrieval and Natural Language Processing: A Graph Theory Approach. Singapur: Springer, 2022, pp. 135-149. Studies in Big Data. https://doi.org/10.1007/978-981-16-9995-5_7.
Sowa, J. (200). Knowledge Representation: Logical, Philosophical, and Computational Foundations. Estados Unidos: Brooks Cole Publishing. https://www.jfsowa.com/krbook/.
UNESCO. Open Research Data [en línea]. 2024. https://www.unesco.org/en/open-science/open-research-data.
Unión Europea. Facts and Figures for Open Research Data - European Commission (2024). https://research-and-innovation.ec.europa.eu/strategy/strategy-2020-2024/our-digital-future/open-science/open-science-monitor/facts-and-figures-open-research-data_en.
Villazon-Terrazas, B.; et al. (2017). Knowledge Graph Foundations. // Pan, J. Z.; et al. (eds). Exploiting Linked Data and Knowledge Graphs in Large Organisations. Cham: Springer International Publishing. 17-55. https://link.springer.com/10.1007/978-3-319-45654-6_2.
W3C (2024). RDF Web Standards https://www.w3.org/RDF/.
Zakaria, S. (2021). Data Visualization as a Research Support Service in Academic Libraries: An Investigation of World-Class Universities. // The Journal of Academic Librarianship. 2021, 47: 5, 1-9. https://doi.org/10.1016/j.acalib.2021
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors retain their copyright, but transfer the exploitation rights (reproduction, distribution, public communication and transformation) to the journal in a non-exclusive way and guarantee the right to the first publication of their work to the journal, which will be simultaneously subjected to the license CC BY-NC-ND. Authors take whole personal responsibility on fulfilling all the appropiate ethical codes and laws, and obtaining all the necessary copyright permissions regarding their articles. Institutional and self- archiving is allowed and encouraged.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© 1996- . Authors retain their copyright, but transfer the exploitation rights (reproduction, distribution, public communication and transformation) to the journal in a non-exclusive way and guarantee the right to the first publication of their work to the journal, which will be simultaneously subjected to the license CC BY-NC-ND. Authors take whole personal responsibility on fulfilling all the appropiate ethical codes and laws, and obtaining all the necessary copyright permissions regarding their articles. Institutional and self- archiving is allowed and encouraged.